AuxTel hologram analysis

Sylvie Dagoret-Campagne, Philippe Gris, Marc Moniez, Jérémy Neveu, Pauna Nicoleta, Corentin Ravoux, Martin Rodriguez-Monroy CNRS/IN2P3

Atmospheric parameters overview

Two main components contribute to atmospheric transparency fluctuations

Important fluctuations:

- Precipitable water vapor (PWV)
- Aerosol VAOD

Fairly stable:

- Ozone
- Aerosol Angstrom parameters

Hologram characteristics

Dispersive element tuned to get a nearly perfectly focused spectrum on the AuxTel plane CCD

- Advantages:
 - spectral separation power is nearly identical from 350 to 1100nm, only limited by seeing
 - 33% maximum transmission (min. 12%) Ο
- Constraints: disperser is not invariant in translation
 - target must be at a specific place (red circle) Ο
 - transmission varies slowly with position 0
 - superimposition of diffraction orders 0

Addition of a mask in 2023/10 to eliminate field stars and background

Ratio 2/1 extraction

Hologram data analysis

Spectractor: forward model of the spectrogram. Ingredients for extraction:

- Dispersion relation: spectrograph and atmospheric refraction model
- PSF(λ): circular Moffat with wavelength dependent parameters (2nd order polynomes) (to be improved)
- Ratio 2/1 extracted from data
- Dedicated spectro flats to avoid steps between amplifiers

Ingredients for atmospheric interpretation

- AuxTel throughput from data using photometric night model
- Use reference star catalogs * throughput * Libradtran to fit atmospheric parameters

Spectrum

Polar star HD185975

Overview of the hologram dataset

- Main strategy in 2023-2025: 3 nights every two weeks from sunset to 2am
- Targets: CALSPEC and Gaia stars
- Alternance hologram / quadnotch
- Pairs of exposures (one pair every ~5min)
- Atmospheric refraction orthogonal to spectrograph dispersion to separate diffraction orders
- From 2023/01:
 - #exposures=7758
 - o #spectra=6201
 - #good spectra=3240 (depends on the quality cuts)
- Improvement since 2023/10 and then further with dome painting
- Some nights with blocking filters (red or blue)

Emphasis on a key ingredient: AuxTel throughput

Given T = (ZP / CALSPEC SED) or T = (ZP / Gaia SED), then we can interpret all our spectra in real time

PWV overview

Total number of Spectra			:	5919	
Number o	f selected	Spectra	:	218	0
Number o	f selected	Polars	:	923	
Number o	f selected	Non-Polars	:	125	7
Number o	f selected	Non-Polars	Bright	1	820
Number o	f selected	Non-Polars	Faint	:	437

Precipitable water vapor measured by holo selected vs time

PWV overview

Precipitable water vapor measured by holo (modulo 1 year)

Ozone overview

Ozone overview

VAOD overview

Impact of using CALSPEC of Gaia spectra

Nearly no impact on water measurement

Strong 100DU shift

because here we used the AuxTel throughput determined with CALSPEC spectrum instead of Gaia

Repeatability test on PWV

PWV difference for pairs of subsequent observations within Δt less than 2 minutes

With mask

Without mask

- Repeatability improved after 2023/10
- Different estimators of spread because of distribution tails

Keep in mind:

• RMS = 0.31mm Minimal accuracy:

• 0.31DU/sqrt(2)=0.22mm

Blue : same target pairs Red : any target pairs

Statistics accumulated over all nights

Repeatability test on ozone

Ozone difference for pairs of subsequent observations within Δt less than 2 minutes

With collimator

All data with and without collimator

Repeatability improved after 2023/10

Keep in mind: • RMS = 21 DU Minimal accuracy: • 21 DU/eart(2)=15 DI

21DU/sqrt(2)=15 DU

Blue : same target pairs Red : any target pairs

Statistics accumulated over all nights

PWV variation time scales

- Month scale: 15mm variations during Chilean summer
- Week scale: ~5mm variations
- Night scale: ~2mm variations (sometimes more, sometimes less), often not polynomial in time
- Hour scale: 0 to 2mm variation per hour
- 5min scale: up to 0.5mm but hard to be affirmative because...
- 30s<dt<5min: not available

16

14

12

10

.01.09

.01-13

• 30sec scale: 0.3mm RMS estimated with exposure pairs

PWV variation distribution for short and larger time separation

• From 2023/10:

How PWV differences broaden as time increases ?

- On average no drift in ΔPWV but for many nights we measure a 0.5mm variation
- The broadening of this distribution indicate the uncertainty
 If monitoring with sparse measurements:
- Here 0.2 mm in 1 hour (on average)

Statistics accumulated over all nights

Evolution of RMS with time separation

1.4 1.4 1.2 1.0 0.8 0.6 0.4 0.4 0.2 0.0 0 1 2 3 4 5 6 7

Statistics averaged over all nights from 2023/10

• Evolution of the distribution RMS with time separation

- 1 hour : 0.3 mm
- 2 hours : 0.5 mm
- 5 hours : 0.7 mm

Other examples

1 month with 3 stars

Impact of Angular Separation on ΔPWV

- No significative effect of angular separation on Δ PWV
- Time separation has a stronger impact on ΔPWV

Seasonal effects - PWV (polar star HD185975)

HD185975

1.75 1.50 <[uu] VWd> 1.25 [• 1.00 Md • 0.75 ⊻)pts • 0.50 0.25 PWV [mm]_{min}, _{max} 00 * å de og å â

green=spring red = summer orange=autumn blue=winter

Seasonal effects - ozone (polar star HD185975)

HD185975

360
<[qp]
34
</pre> ത ° 0 000 æ - 50 [qp] 0 0 . 40 2 ozone [db]_{min} OZ 0 0 • - 20 - 20 mô 20 -euo 10 ²⁰ 0 08

green=spring red = summer orange=autumn blue=winter

Seasonal effects

Atmospheric transmission :

- 2 seasons :
 S1 : 01/01 30/05 (~ summer+autumn)
 S2 : 01/06 31/12 (~ winter+spring)
- Transmission down to ~0.45 in S1 in the y band (~0.6 in S2)

Observed climatic effects :

- Higher PWV in summer (S1), period of maximum rainfall in Chile (linked to the Amazon monsoon)
- Higher ozone in winter (S2)

Impact of atmospheric parameters on σ_{zp} and σ_{λ} (LSST throughputs)

- For each observation: (airmass, $\Delta_{airmass}$, pwv, Δ_{pwv} , ozone, Δ_{ozone} , beta, Δ_{beta} , aerosol(VAOD), $\sigma_{aerosol}$ (σ_{VAOD})) -> estimated from pairs
- n random values:

Ο

- param+gauss $(0,\sigma_{param} = \Delta_{param}/\sqrt{2})$ • -> n throughputs (no error on mirrors,
- -> n throughputs (no error on mirrors, lenses and filters)
- For each throughput using LSST throughputs:
 - zero-points estimation (for each band)

$$ar{\lambda}_b = rac{\int T_b(\lambda)\lambda d\lambda}{\int T_b(\lambda)d\lambda}$$

$$\longrightarrow \sigma^b_{zp}, \sigma^b_{ar\lambda}$$

Using AuxTel hologram for LSST catalog

- Summary of atmospheric parameter features:
 - PWV real time measurement under control (up to a litlle offset if throughput is biased)
 - no clear spatial variations with <90° scale with respect to polar star
 - random temporal variations at ~hour scale, up to 2mm/hour
 - seasonal effect: mean and RMS change with season
 - Ozone: seasonal effect visible up to an offset (to be fixed with better throughput determination)
 - Aerosols: "gray" extinction clearly visible in real time but hard to say something about coloured variations
- Needs for a future AuxTel observing strategy after LSSTCam start:
 - known stars (with external or internal catalog)
 - use blocking filters (for now)
 - DDF dedicated target stars for PWV follow-up for SNIa cosmology

Distance moduli μ are estimated using the B-band rest-frame magnitude of the SNIa... which shifts with redshift in Earth frame

CASLPEC vs Gaia

Colour compensations

- Colour shift between PWV=3 and 9mm is between ~50-100mmag depending on stellar type
- Ignoring this dependence means using average colour shift -> object per object shift uncertainty ~20mmag
- If the stellar type is known and PWV is measured with <0.5mm of precision => we can return to reference atmospheric conditions with 1mmag precision

Dependence on object's SED

- Impact on colour depends on
 - Atmosphere (PWV, aerosols, ozone,....)
 - Object's SED (spectral types, galaxies, SNe)
- Mean colour correction → biased colors (several mmag depending on atmospheric components)

- SED modeling needs to account for object's nature, i.e. **SED shape**
- Currently working on different approaches:
 - $\circ \quad \mbox{Analytical modeling} \rightarrow \\ \mbox{improving fitting method} \\$
 - k nearest colour neighbours (kNN) → need to expand training catalogue

Special-flats for spectroscopy

Why special? Because the final path of the light is modified by the dispersor

- Obtain special flats for spectroscopy \rightarrow Sensor-flats
 - We want to keep pixel-to-pixel variations (high frequency) while removing large-scale variations (low frequency) due to upstream optics, common to all wavelengths
 - \circ Develop methodology to achieve this \rightarrow Smooth component removal by filtering

Special-flats for spectroscopy

Studying different methods to produce "flat-fields" for spectroscopy:

- Low frequency component removal → Sensor-flats
- Spectral exposures with horizontal shifting star \rightarrow **Dither-flats**

Hologram transmission

Measured on optical test bench:

- holo4_003: currently installed on AuxTel
- holo4_001: spare

Evolution of RMS with time separation

• Δ PWV broadening

• over 10 hours of 10 minutes slices

• Evolution of the distribution RMS with time separation

- 1 hour : 0.3 mm
- 2 hours : 0.5 mm
- 5 hours : 0.7 mm

Statistics averaged over all nights

Quality cuts

 $\chi^{2} < 20$

186.75 mm < D_CCD_x < 187.75 mm

186.6 mm < D_CCD_y < 187.6 mm

VAOD < 0.1

Ozone < 620 db

Atmospheric Transparency variations with Precipitable water vapor

Atmospheric transparency variations by precipitable water vapor (1%-99% percentile) airmass = 1.20

- Expect seasonal fluctuations
- Significant variations

Atmospheric transparency variations by Ozone (1%-99%percentile) airmass = 1.20

- Expect seasonal fluctuations
- Restricted range.
- Limited impact on transparency variations

Atmospheric transparency variations by Aerosols VAOD (1%-99%percentile) airmass = 1.20

- Vertical aerosol depth
- Very significant variations

$$T_{aerosols} = \exp(-\tau(\lambda_0) \left(\frac{\lambda}{\lambda_0}\right)^{-\beta})$$

Atmospheric Transparency variations with Aerosol Angstrom exponent

Atmospheric transparency variations by Aerosols-Angstrom (1%-99%) percentile) airmass = 1.20

- Vertical aerosol depth exponent parameter
- Does not induce large variations in transparency
- (unless mixed with grey attenuation)

$$T_{aerosols} = \exp(-\tau(\lambda_0) \left(\frac{\lambda}{\lambda_0}\right)^{-\beta})$$

Excess uncertainty with time separation

Statistics averaged over all nights

2022 + 14 2023 + 2024 + 12 × 10 سس] ۸۸۸ + 4 2 0 24-02-01 24-03-01 24-04-01 24-05-01 24-06-01 24-01-01 24-08-01 24-09-01 24-10-01 24-12-01 24-12-01 25-01-01 date (since January)

Precipitable water vapor measured by holo (modulo 1 year)

Ozone variation after collimator in place

LSST-France, Nov 27-29 2024, APC

Ozone variation after collimator in place

Laboratoire de Physique des 2 Infinis

Vertical aerosols depth

Vertical aerosols depth after collimator

Median and spread of Ozone per night

Vertical aerosols depth after collimator

LSST-France, Nov 27-29 2024, APC

Seasonal effect (Modulo 1 year)

(CNTS)

UNIVERSITE UNIVERSITE

Seasonal effect (Modulo 1 year) after collimator

26/11/2024

LSST-France, Nov 27-29 2024, APC

• Slow variation per night

Impact of Angular Separation on ΔPWV

- No obvious effect of significative effect on Δ PWV due to angular separation
- Time separation account more to on Δ PWV dispersion